Abstract

Dps, the most abundant protein during the stationary growth phase, in Salmonella enterica is required for resistance to reactive oxygen species produced by the host during infection. It has been reported that in Salmonella dps expression is controlled by RpoS and Fur proteins. However, the regulation and function of Dps remain to be resolved. In the present work we demonstrate that activation of the complex RcsCDB regulatory system increases dps expression during exponential growth of Salmonella. In addition, we show that such dps upregulation produces high levels of H2O2 resistance. This phenotype allows the bacteria to avoid reactive oxygen species killing at early stages of growth, thus protecting its genetic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.