Abstract

The linear instability of a vapor film formed at the surface of a flat horizontal heater surrounded by an externally cooled liquid is investigated in the presence of a gravitational field. Consideration is given to the case when the stationary base state is characterized by the heat fluxes balanced at the interface between the two media. The critical value of the heat flux required for the complete suppression of the Rayleigh–Taylor instability by the phase transition has been evaluated mainly in the absence of the natural convection in the liquid layer and is found to be different from the known data obtained by approximate approaches. The case of the instability suppression in the system when long-wave disturbances have the longest lifetime is described. It has been shown that the media pressure influence on the phase transition, revealed in thin vapor films, can markedly increase the growth rate of long-wave disturbances and prevent their suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.