Abstract

A new algorithm for the computation of eigenvalues of a nonsymmetric matrix pencil is described. It is a generalization of the shifted and inverted Lanczos (or Arnoldi) algorithm, in which several shifts are used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the Hessenberg pencil, gives Ritz approximations to the solution of the original pencil. It is shown how complex shifts can be used to compute a real block Hessenberg pencil to a real matrix pair. Two applicationx, one coming from an aircraft stability problem and the other from a hydrodynamic bifurcation, have been tested and results are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.