Abstract
A series of conjugated donor molecules (DmAnSq where m = 1-4, n = 1-7 while D = benzodithiophene, A = benzooxadiazole and S denotes ethyne spacers between D and A or D and D fragments) with various ratios of D/A fragments and topologies have been designed and investigated for OPV applications. An increase in the ratio of the acceptor fragment with respect to the donor fragment decreases the LUMO energy level and narrows the Eg for the designed molecule. More vertically (C4 and C8 substituted phenyl ring positions) bonded acceptor fragments than linearly (C2 and C6 substituted thiophene ring positions) bonded fragments result in a significant red shift in the maximum absorption wavelength. While, linearly bonded fragments lead to stronger absorption bands. Molecules with D-A-D topology exhibit more significant optical and electronic characteristics than those with D-D topology. All donor molecules (m = 2-4) of the D-A-D type show lower λh values than those of 1 donor containing (DAn) molecules. D-D type molecules show only lower λe values than DAn molecules because of the presence of a second donor fragment. The charge transfer phenomenon is shape dependent. The branched or anisotropic X, H, π, n, and square shaped molecules display higher charge transfer rates than the corresponding linear isomers due to better dimensionality. On the basis of these results, we suggest that designed donor and corresponding matched acceptor molecules have potential to act as promising candidates in solar cell devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.