Abstract

Mean annual rates of tritium input into the ocean averaged over 5° latitude bands are presented for the major oceans, for the period 1952–1975. The rates are obtained by converting tritium concentrations in marine precipitation into net oceanic tritium input, by means of a hydrological model. The tropospheric tritium pattern is specified on the basis of available observations, and climatological means from the literature are used for the rates of evaporation and precipitation and for the relative humidity in ship's height, that enter the model. Tritium input by water vapor exchange exceeds that by precipitation about three-fold. Tritium input by river runoff and by net tropospheric tritium outflow from the continents is also accounted for. This contribution is small except for the northern Indian Ocean and the North Atlantic. The inputs have hemispheric maxima near 50° latitude. The northern hemisphere inputs were strongly peaked in 1963–1964, whereas temporal changes in the southern hemisphere were much more gradual. By 1972, about 75% of the total oceanic input had been received by the northern ocean. For the Pacific, the computed total input agrees with the actual tritium inventory within the limits of uncertainty (about ±20%). The global tritium inventory is estimated at 1.9 GCi in 1972, which corresponds to an average tritium yield of 0.9 kg tritium per megaton TNT equivalent of nuclear fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call