Abstract

The rates and patterns of InDel (insertions and deletions) and substitution in rodent (mouse and rat) have been studied. The result reveals that deletions occur more frequently than insertions, and single nucleotide insertion and deletion are the most frequent in both mouse and rat. The frequencies of both deletions and insertions decrease rapidly with increasing InDels length, and the size distributions of both insertions and deletions can be described well by power-law. There are more AT→GC than GC → AT substitutions in the introns of rat. However, there are more GC→AT than AT→GC substitutions in the introns in mouse. The deletion bias found in introns in mouse and rat supports the prediction that intron insertions are more deleterious than deletions because of reduced transcription and splicing efficiency. The patterns of substitution suggest that both composition and GC content are not equilibrium in the introns in rodents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.