Abstract
Accurate characterization of the mechanical response of collagenous tissues is critical for investigations into mechanisms of soft tissue injury. These tissues are inherently viscoelastic, exhibiting strain-rate dependent stiffnesses, creep, and stress-relaxation. The strain-rate features of the failure portion of the stress-strain curve are less well developed. Collagen-distribution based models are improving and capable of reproducing the non-linear aspects of the elastic response of soft tissues, but still require parameterization of failure regions. Therefore, the purpose of this investigation, was to determine whether the parameters characterizing the rate of damage accumulation in a collagen-distribution model are proportional to strain rate.Fifty rat tail tendons were subjected to one of five different strain rates (0.01, 0.05, 0.1, 0.15, 0.20 s−1) until failure in an uni-axial strain test. To test the hypothesis that the parameters associated with damage rate are proportional to strain rate, a collagen distribution model was employed with the parameters describing the rate of fibre damage being obtained by least-squares and regressed against the strain rate.The breaking function was found to be proportional to strain rate, with a proportionality constant of 60.7 s−1. Properties characterizing the failure portion of the stress-strain curves for rat tail tendons are also reported. The Young's Modulus did not vary with strain rate and was found to be 103.3 ± 49.5 MPa. Similarly, failure stresses and strains did not vary across the strain rates tested, and were 15.6 ± 6.1 MPa and 32.2 ± 9.1%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.