Abstract

P-glycoprotein ATPase activity has been studied almost exclusively by measuring inorganic phosphate release from inside-out cellular vesicles. We have recently proposed a new method based on measurements of the extracellular acidification rate (ECAR) of living cells with a Cytosensor microphysiometer. This method allows for systematic investigation of the various factors influencing P-glycoprotein activation in living cells. Basal metabolic rates or ECARs of different MDR1-transfected cell lines were compared with those of the Mdr1a(-/-)1b(-/-) knockout, MRP1-transfected, and corresponding wild-type cell lines. Basal ECARs of all cells were on the order of 10(7) protons/cell/s, whereby those of genetically modified cells were on average (over all cell lines) slightly lower than those of wild-type cells. The expression level of P-glycoprotein in MDR1-transfected cells had no influence on basal ECARs. Verapamil-induced ECARs were specific for MDR1-transfected cells and increased with the expression level of P-glycoprotein. Moreover, ECARs were dependent on the metabolic state of the cell and were (2.8 +/- 1.2) x 10(6) and (8.0 +/- 1.5) x 10(6) protons/cell/s in glucose-deficient and glucose-fed NIH-MDR-G185 cells, respectively, after verapamil (10 muM) stimulation. The ECARs were practically identical to the rates of lactate extrusion and thus reflect the rates of ATP synthesis via glycolysis. Taking into account the number of P-glycoprotein molecules per cell, the rate of ATP hydrolysis in inside-out vesicles of the same cells was determined as (9.2 +/- 1.5) x 10(6) phosphates/cell/s, in good agreement with the rate of ATP synthesized in glucose-fed cells. The energy required for P-glycoprotein activation relative to the basal metabolic energy was twice as large in glucose-deficient as in glucose-fed cells, suggesting cellular protection by P-glycoprotein even under conditions of starvation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.