Abstract

The {\it forward-backward algorithm} is a powerful tool for solving optimization problems with a {\it additively separable} and {\it smooth} + {\it nonsmooth} structure. In the convex setting, a simple but ingenious acceleration scheme developed by Nesterov has been proved useful to improve the theoretical rate of convergence for the function values from the standard $\mathcal O(k^{-1})$ down to $\mathcal O(k^{-2})$. In this short paper, we prove that the rate of convergence of a slight variant of Nesterov's accelerated forward-backward method, which produces {\it convergent} sequences, is actually $o(k^{-2})$, rather than $\mathcal O(k^{-2})$. Our arguments rely on the connection between this algorithm and a second-order differential inclusion with vanishing damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.