Abstract
Chromosomal inversions are theorized to play an important role in adaptation by preventing recombination, but testing this hypothesis requires an understanding of the rate of inversion fixation. Here, we use chromosome-level whole-genome assemblies for 32 genera of plants to ask how fast inversions accumulate and what factors affect this rate. We find that on average species accumulate 4-25 inversions per million generations, but this rate is highly variable, and we find no correlation between sequence divergence or repeat content and the number of inversions or the proportion of genome that was inverted and only a small correlation with chromosome size. We also find that inversion regions are depleted for genes and enriched for TEs compared to the genomic background. This suggests that idiosyncratic forces, like natural selection and demography, are controlling how fast inversions fix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evolution; international journal of organic evolution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.