Abstract

We compare the luminosity function and rate inferred from the BATSE short hard bursts (SHBs) peak flux distribution with the redshift and luminosity distributions of SHBs observed by Swift/HETE II. The Swift/HETE II SHB sample is incompatible with SHB population that follows the star formation rate. However, it is compatible with a distribution of delay times after the SFR. This would be the case if SHBs are associated with binary neutron star mergers. The implied SHB rates that we find range from ∼ 8 to ∼ 30h703Gpc−3yr−1. This rate is a much higher than what was previously estimated and it is comparable to the rate of neutron star mergers estimated from statistics of binary pulsars. If GRBs are produced in mergers the implied rate practically guarantees detection by LIGO II and possibly even by LIGO I, if we are lucky. Our analysis, which is based on observed short hard burst is limited to bursts with luminosities above 1049erg/sec. Weaker bursts may exist but if so they are hardly detected by BATSE or S...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call