Abstract

BackgroundThe placenta is an essential organ that provides nutrients and oxygen to the developing fetus and removes toxic waste products from the fetal circulation. Maintaining placental blood osmotic pressure and blood flow is crucial for viable offspring. The renin-angiotensin system (RAS) in the placenta is a key player in the regulation of maternal-fetal blood flow during pregnancy. Therefore, the aim of this study was to determine if RAS genes are differentially expressed in mid to late gestation in rat placenta.MethodsWhole placental tissue samples from pregnant Sprague Dawley rats at embryonic (E) days 14.25, 15.25, 17.25 and 20 (n = 6 for each gestational age) were used for genome-wide gene expression by microarray. RAS genes with expression differences of >2 fold were further analyzed. Quantitative Real-Time PCR (qPCR) was performed on independent samples to confirm and validate microarray data. Immunohistochemisty and Western blotting were performed on a differentially expressed novel RAS pathway gene (ANPEP).ResultsSix out of 17 genes of the RAS pathway were differentially expressed at different gestational ages. Gene expression of four genes (Angiotensin converting enzyme (Ace), angiotensin converting enzyme 2 (Ace2), membrane metalloendopeptidase (Mme) and angiotensin II receptor 1A (Agtr1a)) were significantly upregulated at E20 whereas two others (Thimet oligopeptidase 1 (Thop1) and Alanyl aminopeptidase (Anpep)) were downregulated at E20 prior to the onset of labour. These changes were confirmed by qPCR. Western blots revealed no overall differences in ANPEP protein expression in the placentae. Immunohistochemical studies, however, indicated that the localization of ANPEP differed at E17.25 and E20 as ANPEP localization in the giant trophoblast cell of the junctional zone was no longer detectable at E20.ConclusionsThe current study investigated the expression of members of the RAS pathway in rat placentae and observed significantly altered expression of 6 RAS genes at 4 gestational ages. These findings present the need for further comprehensive investigation of RAS genes in normal and complicated pregnancies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12958-015-0088-y) contains supplementary material, which is available to authorized users.

Highlights

  • The placenta is an essential organ that provides nutrients and oxygen to the developing fetus and removes toxic waste products from the fetal circulation

  • Consistent with previous studies, these results show that Ace and Ace2 increase dramatically at late gestation, indicating that the pathway is highly activated at this stage of gestation [1, 22, 31], so these embryonic days were chosen for study

  • The current study investigated the expression of members of the renin-angiotensin system (RAS) pathway in relatively normal rat placentae at different gestational ages

Read more

Summary

Introduction

The placenta is an essential organ that provides nutrients and oxygen to the developing fetus and removes toxic waste products from the fetal circulation. The renin-angiotensin system (RAS) in the placenta is a key player in the regulation of maternal-fetal blood flow during pregnancy. The Renin-Angiotensin System (RAS) regulates sodium and water homeostasis to maintain blood pressure and fluid balance in all mammals [1, 2]. The maternal and fetal circulating RAS interact with various tissue RASs (ovarian, intrauterine, and intrarenal) [3]. The intrauterine/placental RAS is one of the major extrarenal RAS in pregnancy [4], regulating maternal-fetal blood flow and the uteroplacental blood circulation [1, 5]. Other uteroplacental RAS functions may include endometrial regeneration, decidualisation, implantation, placentation, uterine contraction, prostaglandin synthesis, and estradiol 17 beta secretion [6, 7]. Placental RAS is itself regulated by several hormones including estrogen and progesterone [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call