Abstract

BackgroundActivating transcription factor 2 (ATF2) regulates the expression of downstream target genes and is phosphorylated by the Ras-extracellular-signal-regulated kinase (ERK) pathway. Acetylation of ATF2 is necessary for this type of regulation. However, the molecular mechanism by which the Ras-ERK pathway mediates the regulation of acetylated ATF2 is unknown. This study investigates the mechanism of Ras-ERK pathway-mediated regulation of acetylated ATF2 in maintaining the characteristic phenotype of pancreatic cancer cells.MethodsThis study was carried out using ASPC-1 and BXPC-3 pancreatic cancer cell lines transfected with the double mutant RasG12V/T35S. The levels of phosphorylated ERK1/2 were measured to establish the activated Ras-ERK pathway. The regulation of acetylated ATF2 was examined by detecting the protein level using western blotting, and the effects on cancer cell phenotype were measured using cell viability, proliferation, migration, and apoptosis assays. Also, chromatin immunoprecipitation (ChIP) assays were used to measure the effect on respective downstream target genes.ResultsThe results showed that RasG12V/T35S reduced the level of acetylated ATF2 in ASPC-1 and BXPC-3 cells. Compared to wild-type ATF2, the mutant ATF2K357Q (which mimics the irreversible acetylated form of ATF2) reduced the cancer cell phenotype and showed decreased enrichment on target genes upon transfection with Ras. Moreover, the level of acetylated ATF2 was regulated by the degradation of p300 through E3 ubiquitin ligase mouse double minute 2 homolog (MDM2).ConclusionsActivation of the Ras-ERK pathway regulates acetylated ATF2 through degradation of p300 via a proteasome-dependent pathway, which alters the transcription of downstream target genes responsible for the cancer cell phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.