Abstract

We consider $m$-divisible non-crossing partitions of $\{1,2,\ldots,mn\}$ with the property that for some $t\leq n$ no block contains more than one of the first $t$ integers. We give a closed formula for the number of multi-chains of such non-crossing partitions with prescribed number of blocks. Building on this result, we compute Chapoton's $M$-triangle in this setting and conjecture a combinatorial interpretation for the $H$-triangle. This conjecture is proved for $m=1$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.