Abstract
Diabetes mellitus has become a prevalent disease in the world. Diagnostic protocol for the onset of diabetes mellitus is the initial step in the treatments. The intravenous glucose tolerance test (IVGTT) has been considered as the most accurate method to determine the insulin sensitivity and glucose effectiveness. It is well known that there exists a time delay in insulin secretion stimulated by the elevated glucose concentration level. However, the range of the length of the delay in the existing IVGTT models are not fully discussed and thus in many cases the time delay may be assigned to a value out of its reasonable range. In addition, several attempts had been made to determine when the unique equilibrium point is globally asymptotically stable. However, all these conditions are delay-independent. In this paper, we discuss the range of the time delay and provide easy-to-check delay-dependent conditions for the global asymptotic stability of the equilibrium point for a recent IVGTT model through Liapunov function approach. Estimates of the upper bound of the delay for global stability are given in corollaries. In addition, the numerical simulation in this paper is fully incorporated with functional initial conditions, which is natural and more appropriate in delay differential equation systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.