Abstract

AbstractIn 1993, N. Danikas and A. G. Siskakis showed that the Cesàro operator ${\mathcal{C}}$ is not bounded on $H^{\infty }$; that is, ${\mathcal{C}}(H^{\infty })\nsubseteq H^{\infty }$, but ${\mathcal{C}}(H^{\infty })$ is a subset of $BMOA$. In 1997, M. Essén and J. Xiao gave that ${\mathcal{C}}(H^{\infty })\subsetneq {\mathcal{Q}}_{p}$ for every $0<p<1$. In this paper, we characterize positive Borel measures $\unicode[STIX]{x1D707}$ such that ${\mathcal{C}}(H^{\infty })\subseteq M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ and show that ${\mathcal{C}}(H^{\infty })\subsetneq M({\mathcal{D}}_{\unicode[STIX]{x1D707}_{0}})\subsetneq \bigcap _{0<p<\infty }{\mathcal{Q}}_{p}$ by constructing some measures $\unicode[STIX]{x1D707}_{0}$. Here, $M({\mathcal{D}}_{\unicode[STIX]{x1D707}})$ denotes the Möbius invariant function space generated by ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$, where ${\mathcal{D}}_{\unicode[STIX]{x1D707}}$ is a Dirichlet space with superharmonic weight induced by a positive Borel measure $\unicode[STIX]{x1D707}$ on the open unit disk. Our conclusions improve results mentioned above.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call