Abstract

Interfacial thermal contact conductance is the primary factor limiting the heat transfer in many cryogenic engineering applications. This paper presents an experimental apparatus to measure interfacial thermal contact conductance between pressed alloys in a vacuum environment at low temperatures. The measurements of thermal contact conductance between pressed alloys are conducted by using the developed apparatus. The results show that the contact conductance increases with the decrease of surface roughness, the increase of interface temperature and contact pressure. The temperature dependence of thermal conductivity and mechanical properties is analyzed to explain the results. Thermal contact conductance of a pair of stainless steel specimens is obtained in the interface temperature range of 135–245 K and in the contact pressure range of 1–9 MPa. The results are regressed as a power function of temperature and load. Thermal conductance is also obtained between aluminums as well as between stainless steel and aluminum. The load exponents of the regressed relations for different contacts are compared. Existing theoretical models (the Cooper-Mikic-Yovanovich plastic model, the Mikic elastic model and the improved Kimura model) are reviewed and compared with the experimental results. The Cooper-Mikic-Yovanovich model predictions are found to be in good agreement with experimental results, especially with measurements between aluminums.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.