Abstract
Let K ⊂ Rd be a sufficiently round convex body (the ratio of the circumscribed ball to the inscribed ball is bounded by a constant) of a sufficiently large volume. We investigate the randomized integer convex hull IL(K) = conv (K ⋂ L), where L is a randomly translated and rotated copy of the integer lattice Zd. We estimate the expected number of vertices of IL(K), whose behaviour is similar to the expected number of vertices of the convex hull of Vol K random points in K. In the planar case we also describe the expectation of the missed area Vol (K \ IL(K)). Surprisingly, for K a polygon, the behaviour in this case is different from the convex hull of random points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.