Abstract

Two coarse coding schemes are considered: the random subspace scheme of the authors, and the modified Kanerva model of Prager et al. (1993). Some properties and characteristics of these schemes are investigated experimentally and by analysing their geometrical interpretation. Both schemes do not require exponential growth of the binary code dimensionality against that of the input space. The random subspace scheme allows the code density to be independent from the maximal dimensionality of hyper-rectangle receptive fields. It is especially important when low-dimensional receptive fields are required, as with classifiers or approximators of real-world data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.