Abstract
AbstractThe Rand distance of two set partitions is the number of pairs {x,y} such that there is a block in one partition containing both x and y, but x and y are in different blocks in the other partition. Let R(n,k) denote the number of distinct (unordered) pairs of partitions of n that have Rand distance k. For fixed k we prove that R(n,k) can be expressed as \(\sum_j c_{k,j} {n \choose j} B_{n-j}\) where c k,j is a non-negative integer and B n is a Bell number. For fixed k we prove that there is a constant K n such that \(R(n,{n \choose 2}-k)\) can be expressed as a polynomial of degree 2k in n for all n ≥ K n . This polynomial is explicitly determined for 0 ≤ k ≤ 3.The block distance of two set partitions is the number of elements that are not in common blocks. We give formulae and asymptotics based on N(n), the number of pairs of partitions with no blocks in common. We develop an O(n) algorithm for computing the block distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.