Abstract
We recorded the Raman spectrum of a single azobenzene thiol molecule upon picking it up from an atomically flat gold surface, using an electrochemically etched silver tip, in an ultrahigh vacuum cryogenic scanning tunneling microscope. While suppressed at the junction, the stationary spectrum appeared once the molecule was transferred to the tip, with line intensities that increased by a factor of ∼5 as the tip was retracted from 1 nm to 161 nm. The effect, and the enhanced tensorial Raman spectrum was reproduced using an explicit treatment of the electromagnetic fields to identify a cis-azobenzene thiol molecule, adsorbed on a nanometric asperity removed from the tip apex, lying in the plane normal to the tip z-axis, with enhanced incident and radiative local fields polarized in the same plane. Tips decorated with asperities break the rules and give unique insights on Raman driven by cavity modes of a plasmonic junction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.