Abstract

Despite extensive biochemical analyses, the biological function(s) of plant beta-amylases remains unclear. The fact that beta-amylases degrade starch in vitro suggests that they may play a role in starch metabolism in vivo. beta-Amylases have also been suggested to prevent the accumulation of highly polymerized polysaccharides that might otherwise impede flux through phloem sieve pores. The identification and characterization of a mutant of Arabidopsis var. Columbia with greatly reduced levels of beta-amylase activity is reported here. The reduced beta-amylase 1 (ram1) mutation lies in the gene encoding the major form of beta-amylase in Arabidopsis. Although the Arabidopsis genome contains nine known or putative beta-amylase genes, the fact that the ram1 mutation results in almost complete loss of beta-amylase activity in rosette leaves and inflorescences (stems) indicates that the gene affected by the ram1 mutation is responsible for most of the beta-amylase activity present in these tissues. The leaves of ram1 plants accumulate wild-type levels of starch, soluble sugars, anthocyanin, and chlorophyll. Plants carrying the ram1 mutation also exhibit wild-type rates of phloem exudation and of overall growth. These results suggest that little to no beta-amylase activity is required to maintain normal starch levels, rates of phloem exudation, and overall plant growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.