Abstract

Energetic particle fluxes that are part of the Earth’s ring current and radiation belts can intensify significantly during space weather events like geomagnetic storms and could cause severe damage to satellite-based technologies. Understanding the physical processes that control their dynamics and improving our capability for their prediction is thus extremely important. In the context of space weather applications and user needs, this paper provides a brief description of our kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB) and its further extension to implement a self-consistent electric (E) field. Specific examples that demonstrate RAM-SCB capabilities and limitations to reproduce the near-Earth space weather environment are given. The current status of RAM-SCB is assessed and plans for its further improvement are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.