Abstract

The interaction between the receptor-like kinase (RLK) FERONIA (FER) and the secreted peptide RAPID ALKALINIZATION FACTOR1 (RALF1) is vital for development and stress responses in Arabidopsis Ligand-induced membrane dynamics affect the function of several RLKs, but the effects of the RALF1-FER interaction on the dynamics of FER and the ensuing effects on its functionality are poorly understood. Here, we show that RALF1 modulated the dynamics and partitioning of FER-GFP at the plasma membrane (PM). Moreover, FER was internalized by both clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE) under steady-state conditions. After RALF1 treatment, FER-GFP internalization was primarily enhanced via the CME pathway, raising FER-GFP levels in the vacuole. RALF1 treatment also modulated trafficking of other PM proteins, such as PIN2-GFP and BRI1-GFP, increasing their vacuolar levels by enhancing their internalization. Importantly, blocking CME attenuated RALF1-mediated root growth inhibition independently of RALF1-induced early signaling, suggesting that the RALF1 can also exert its effects via the CME pathway. These findings reveal that the RALF1-FER interaction modulates plant growth and development, and this might also involve endocytosis of PM proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.