Abstract
The inversion of the one-dimensional Radon transform on the rotation group SO(3) is an ill-posed inverse problem which applies to x-ray tomography with polycrystalline materials. This paper presents a novel approach to the numerical inversion of the one-dimensional Radon transform on SO(3). Based on a Fourier slice theorem the discrete inverse Radon transform of a function sampled on the product space of two two-dimensional spheres is determined as the solution of a minimization problem, which is iteratively solved using fast Fourier techniques for and SO(3). The favorable complexity and stability of the algorithm based on these techniques has been confirmed with numerical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.