Abstract

AbstractThe Radon and Hilbert transform and their applications to convectively coupled waves (CCWs) are reviewed. The Hilbert Transform is used to compute the wave envelope, whereas the Radon transform is used to estimate the phase and group velocities of CCWs. Together, they provide an objective method to understand CCW propagation. Results reveal phase speeds and group velocities for fast waves (mixed Rossby‐gravity, westward and eastward inertio‐gravity, and Kelvin) that are consistent with previous studies and with Matsuno's equatorial wave dispersion curves. However, slowly‐propagating tropical depression‐like systems and equatorial Rossby waves exhibit wave envelopes that propagate faster than the individual wave crests, which is not predicted by dry shallow water theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.