Abstract

The subject of research is the underground structures of the cryolithozone (permafrost zones). The design of such structures, in particular the choice of space-planning solutions, methods and means of fastening rocks, unlike structures located not in frozen rocks, has a number of features and is associated with the need to take into account the zone of thermal influence of chambers operated with different thermal conditions constantly or periodically. For example, when changing the type of thermal regime in the chambers in cases of natural or man-made accidents and catastrophes. The purpose of the research was to determine the zone of thermal influence of a single chamber of an underground cryolithozone structure, depending on the type of fastening used (in the presence and absence of a thermal protective layer) and the duration of the operational period, using various calculation formulas. To achieve this goal, three types of formulas were studied that determine the dependence of the dimensionless radius of thermal influence of chambers on Fourier and Bio criteria. Multivariate calculations were performed using the formulas, which are presented in the form of 3D graphs. The analysis of the performed calculations showed that the calculations for all three formulas give similar results in a fairly wide range of changes in the initial parameters. Moreover, the formula, which does not take into account the influence of the Bio number on the radius of thermal influence, gives a certain calculated margin. In general, it is shown that the higher the value of the Bio number, the less its effect on the depth of the thermal influence zone of the underground chamber. Small values of the Bio number (up to 5-6) are typical for cameras that are fixed with sprayed concrete or have special heat-protective coatings.It is established that when choosing space-planning solutions for underground structures to assess the influence of the thermal factor, it is quite acceptable to use an approximate formula to estimate the radius of the thermal influence of a single chamber. The scientific novelty lies in establishing the scope of the studied formulas for predicting the radius of the zone of thermal influence of cameras with various types of fastening and thermal protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call