Abstract
We introduce a new invariant for subcategories X of finitely generated modules over a local ring R which we call the radius of X. We show that if R is a complete intersection and X is resolving, then finiteness of the radius forces X to contain only maximal Cohen-Macaulay modules. We also show that the category of maximal Cohen-Macaulay modules has finite radius when R is a Cohen-Macaulay complete local ring with perfect coefficient field. We link the radius to many well-studied notions such as the dimension of the stable category of maximal Cohen-Macaulay modules, finite/countable Cohen-Macaulay representation type and the uniform Auslander condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.