Abstract

Background & purposeRadium-223 (Ra223) improves survival in metastatic prostate cancer (mPC), but its impact on systemic immunity is unclear, and biomarkers of response are lacking. We examined markers of immunomodulatory activity during standard clinical Ra223 and studied the impact of Ra223 on response to immune checkpoint inhibition (ICI) in preclinical models. Materials & methodsWe conducted a single-arm biomarker study of Ra223 in 22 bone mPC patients. We measured circulating immune cell subsets and a panel of cytokines before and during Ra223 therapy and correlated them with overall survival (OS). Using two murine mPC models—orthotopic PtenSmad4-null and TRAMP-C1 grafts in syngeneic immunocompetent mice—we tested the efficacy of combining Ra223 with ICI. ResultsAbove-median level of IL-6 at baseline was associated with a median OS of 358 versus 947 days for below levels; p = 0.044, from the log-rank test. Baseline PlGF and PSA inversely correlated with OS (p = 0.018 and p = 0.037, respectively, from the Cox model). Ra223 treatment was associated with a mild decrease in some peripheral immune cell populations and a shift in the proportion of MDSCs from granulocytic to myeloid. In mice, Ra223 increased the proliferation of CD8+ and CD4+ helper T cells without leading to CD8+ T cell exhaustion in the mPC lesions. In one of the models, combining Ra223 and anti-PD-1 antibody significantly prolonged survival, which correlated with increased CD8+ T cell infiltration in tumor tissue. ConclusionThe inflammatory cytokine IL-6 and the angiogenic biomarker PlGF at baseline were promising outcome biomarkers after standard Ra223 treatment. In mouse models, Ra223 increased intratumoral CD8+ T cell infiltration and proliferation and could improve OS when combined with anti-PD-1 ICI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call