Abstract

To present an integrated 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomic characterisation of programmed death-ligand 1 (PD-L1) status in non-small-cell lung cancer (NSCLC). In this retrospective study, 18F-FDG PET/CT images and clinical data of 394 eligible patients were divided into training (n=275) and test sets (n=119). Next, the corresponding nodule of interest was segmented manually on the axial CT images by radiologists. After which, the spatial position matching method was used to match the image positions of CT and PET, and radiomic features of the CT and PET images were extracted. Radiomic models were built using five different machine-learning classifiers and the performance of the radiomic models were further evaluated. Finally, a radiomic signature was established to predict the PD-L1 status in patients with NSCLC using the features in the best performing radiomic model. The radiomic model based on the PET intranodular region determined using the logistic regression classifier preformed best, yielding an area under the receiver operating characteristics curve (AUC) of 0.813 (95% CI: 0.812, 0.821) on the test set. The clinical features did not improve the test set AUC (0.806, 95% CI: 0.801, 0.810). The final radiomic signature for PD-L1 status was consisted of three PET radiomic features. This study showed that an 18F-FDG PET/CT-based radiomic signature could be used as a non-invasive biomarker to discriminate PD-L1-positive from PD-L1-negative in patients with NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call