Abstract
The evolution of a coronal mass ejection (CME) event observed on February 17, 1985 is studied using two-dimensional radio imaging observations along with simultaneously obtained coronagraph observations. This event shows that a slow CME can be associated with type II and type IV radio bursts. The implications of the spatial association of the radio bursts with the CME are discussed. It is argued that the CME is due to an instability of the large-scale magnetic field in a helmet streamer and that the radio bursts are some of the responses to this instability. The new feature of this event is the clear association of the moving type IV burst with a CME traveling slower than the coronal Alfven speed. The structure of slow shocks driven by such a CME is discussed, and it is shown that shock drift and diffusive acceleration are ineffective. An acceleration mechanism involving current-driven lower hybrid waves is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.