Abstract

We measure the radio luminosity function (RLF) of steep-spectrum radio sources using three redshift surveys of flux-limited samples selected at low (151 & 178 MHz) radio frequency, low-frequency source counts and the local RLF. The redshift surveys used are the new 7C Redshift Survey (7CRS) and the brighter 3CRR and 6CE surveys totalling 356 sources with virtually complete redshift information. This yields unprecedented coverage of the radio luminosity versus z plane for steep-spectrum sources, and hence the most accurate measurements of the steep-spectrum RLF yet made. We find that a simple dual-population model for the RLF fits the data well, requiring differential density evolution (with z) for the two populations. The low-luminosity population can be associated with radio galaxies with weak emission lines, and includes sources with both FRI and FRII radio structures; its comoving space density $\rho$ rises by about one dex between z~0 and z~1 but cannot yet be meaningfully constrained at higher redshifts. The high-luminosity population can be associated with FRII radio galaxies and quasars with strong emission lines; its $\rho$ rises by nearly three dex between z~0 and z~2. These results mirror the situation seen in X-ray and optically-selected AGN. The integrated radio luminosity density of the combination of the two populations is controlled by the value of $\rho$ at the low-luminosity end of the RLF of the high-luminosity population, a quantity which has been directly measured at z~1 by the 7CRS. We argue that robust determination of this quantity at higher redshifts requires a new redshift survey based on a large (~1000 source) sample about five times fainter than the 7CRS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.