Abstract

In the recent decade an RF driven, low-pressure plasma reactor with supersonic plasma jet was developed (RPJ). This reactor was successfully used for deposition of thin films of various materials. The deposition of thin films indicates that the properties of the deposited films are dependent on the sputtering or reactive sputtering processes appearing inside the nozzle (hollow cathode). The nozzle (hollow cathode) fabricated of different kinds of materials and alloys works both as a cathode of the radio frequency (RF) hollow cathode discharge and as a nozzle for plasma jet channel generation as well. The RF hollow cathode discharge is a secondary discharge, which is induced by the primary RF plasma generated in the reactor chamber. The present paper deals with the experimental study of this RF hollow cathode discharge. The stress is laid on the investigation of the axial distribution of discharge parameters and sputtering processes inside the nozzle. On the base of experiments, the simple model of the axial distribution of the investigated RF hollow cathode discharge has been developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.