Abstract

Radio outflows of active galactic nuclei (AGN) are invoked in cosmological models as a key feedback mechanism in the latest phases of massive galaxy formation. Recently it has been suggested that the two major radio AGN populations -- the powerful high-excitation, and the weak low-excitation radio AGN (HERAGN and LERAGN, resp.) -- represent two earlier and later stages of massive galaxy build-up. To test this, here we make use of a local (0.04<z<0.1) sample of ~500 radio AGN with available optical spectroscopy, drawn from the FIRST, NVSS, SDSS, and 3CRR surveys. A clear dichotomy is found between the properties of low-excitation (absorption line AGN, and LINERs) and high-excitation (Seyferts) radio AGN. The hosts of the first have the highest stellar masses, reddest optical colors, and highest mass black holes but accrete inefficiently (at low rates). On the other hand, the high-excitation radio AGN have lower stellar masses, bluer optical colors (consistent with the `green valley'), and lower mass black holes that accrete efficiently (at high rates). Such properties can be explained if these two radio AGN populations represent different stages in the formation of massive galaxies, and thus are also linked to different phases of the `AGN feedback'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.