Abstract

Today's practice of interpreting Hg capillary pressure curves — a widespread method in porosimetry — is generally unsatisfactory. This has already been demonstrated by Fatt. First, the saturation branch of such a curve is interpreted using the concept of a pore space model in which essential features of a network structure are disregarded. Second, the data provided by the desaturation branch are not used. Distributions of radii of capillaries within porous materials derived by this technique are usually incorrect in that the frequencies of occurrence of the greater radii turn out too small, those of the smaller radii too large. We present a more reliable approach which constrains radii frequency ranges for the Hg saturated pore space and for both the part of the pore space that desaturates and the part that traps mercury when Hg pressure is released. The pore space may be of an arbitrary geometrical structure, the radii distribution may be continuous. Also, the Hg desaturation may enable one to distinguish experimentally between structural and contact angle hysteresis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.