Abstract

The radiation temperature TR and M-band fraction fM inside the vacuum Au hohlraum have been experimentally determined by a shock wave technique and a broadband soft x-ray spectrometer (SXS) on the SGIII-prototype laser facility. From the results of the shock wave technique, TR is about 202 eV, and fM is about 9% for the hohlraums driven by a 1 ns flattop pulse of 6 kJ laser energy. The Continuous Phase Plate (CPP) for beam smoothing is applied in the experiment, which increases TR to 207 eV while has almost no influence on fM. Comparisons between the results from the two kinds of technologies show that TR from the shock wave technique is lower than that from SXS whether with CPP or not. However, fM from the shock wave technique is consistent with that from SXS without CPP, but obviously lower than the SXS's result with CPP. The preheat effect on exterior surface of witness plate is reduced by thicker thickness of witness plate designed for higher laser driven energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.