Abstract

Nucleobases are of significant importance to all known organisms, may be an important building block of life, and could be important biosignatures of current or past life. Given their potential significance to the field of astrobiology, it is important to understand the survival of these molecules when subjected to ionizing radiation as is present in a range of extraterrestrial environments. In this work, we present data on the kinetics of the radiolytic destruction of pure thymine and water + thymine ice mixtures at temperatures from 13 to 150 K. Rate constants were measured using in situ infrared spectroscopy, and radiolytic half-lives for thymine were computed for different planetary and interstellar environments. Our results demonstrate that the survival of thymine decreases as the dilution of thymine in water increases. Additionally, we find that thymine survival increases with ice temperature and that this decrease may be related to structure of the ice matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.