Abstract
A two-fluid model, air over seawater, is used to investigate the radiation of infrasound by ocean waves. The acoustic radiation which results from the motion of the air/water interface is known to be a nonlinear effect. The second-order nonlinear contribution to the acoustic radiation is computed and the statistical properties of the received microbarom signals are related to the statistical properties of the ocean wave system. The physical mechanisms and source strengths for radiation into the atmosphere and ocean are compared. The observed ratio of atmospheric to oceanic microbarom peak pressure levels (approximately 1 to 1000) is explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.