Abstract
We continue the recent study of our model theory of low-density cosmology without dark matter. We assume a purely radiative spherically symmetric background and treat matter as anisotropic perturbations. Einstein’s equations for the background are solved numerically. We find two irregular singular points, one is the Big Bang and the other a Big Crunch. The radiation temperature continues to decrease for another 0.21 Hubble times and then starts to increase towards infinity. Then we derive the four evolution equations for the anisotropic perturbations. In the Regge- Wheeler gauge there are three metric perturbations and a radial velocity perturbation. The solution of these equations allow a detailed discussion of the cosmic evolution of the model universe under study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.