Abstract

The radial-azimuthal instability of a hot two-temperature accretion disc with advection is examined in this paper. We find that the inclusion of very little advection has significant effects on two acoustic modes for a geometrically thin, cooling-dominated two-temperature disc, but has no effect on acoustic modes for a geometrically slim, cooling-dominated two-temperature disc. We also find that, when azimuthal perturbations are considered, the stability properties of the disc are different from those in the pure radial perturbation case. An increase of the azimuthal wavenumber will stabilize the acoustic modes but make the viscous and thermal modes more unstable for a geometrically thin, cooling-dominated two-temperature disc. It makes the thermal mode more unstable and the acoustic mode more stable, but only affects the instability of the viscous mode for short-wavelength perturbations for a geometrically slim, cooling-dominated two-temperature disc. For a geometrically slim, advection-dominated two-temperature disc, the increase of the azimuthal perturbation makes the I- and O-modes more stable and the thermal mode more unstable, but has no effect on the viscous mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.