Abstract
In this letter we examine the evolution of the radial metallicity gradient induced by secular processes, in the disk of an $N$-body Milky Way-like galaxy. We assign a [Fe/H] value to each particle of the simulation according to an initial, cosmologically motivated, radial chemical distribution and let the disk dynamically evolve for 6 Gyr. This direct approach allows us to take into account only the effects of dynamical evolution and to gauge how and to what extent they affect the initial chemical conditions. The initial [Fe/H] distribution increases with R in the inner disk up to R ~ 10 kpc and decreases for larger R. We find that the initial chemical profile does not undergo major transformations after 6 Gyr of dynamical evolution. The final radial chemical gradients predicted by the model in the solar neighborhood are positive and of the same order of those recently observed in the Milky Way thick disk. We conclude that: 1) the spatial chemical imprint at the time of disk formation is not washed out by secular dynamical processes, and 2) the observed radial gradient may be the dynamical relic of a thick disk originated from a stellar population showing a positive chemical radial gradient in the inner regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.