Abstract

Genetic and cytologic data from Saccharomyces cerevisiae and mammals implicate the Mre11 complex, consisting of Mre11, Rad50, and Nbs1, as a sensor of DNA damage, and indicate that the complex influences the activity of ataxia-telangiectasia mutated (ATM) in the DNA damage response. Rad50(S/S) mice exhibit precipitous apoptotic attrition of hematopoietic cells. We generated ATM- and Chk2-deficient Rad50(S/S) mice and found that Rad50(S/S) cellular attrition was strongly ATM and Chk2 dependent. The hypomorphic Mre11(ATLD1) and Nbs1(Delta)(B) alleles conferred similar rescue of Rad50(S/S)-dependent hematopoietic failure. These data indicate that the Mre11 complex activates an ATM-Chk2-dependent apoptotic pathway. We find that apoptosis and cell cycle checkpoint activation are parallel outcomes of the Mre11 complex-ATM pathway. Conversely, the Rad50(S) mutation mitigated several phenotypic features of ATM deficiency. We propose that the Rad50(S) allele is hypermorphic for DNA damage signaling, and that the resulting constitutive low-level activation of the DNA damage response accounts for the partial suppression of ATM deficiency in Rad50(S/S) Atm(-/-) mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.