Abstract
While bioengineers ask how the shape of diagnostic and therapeutic particles impacts their pharmacological efficiency, biodistribution, and toxicity, microbiologists suggested that morphological adaptations enable pathogens to perhaps evade the immune response. Here, a shape-dependent process is described that limits phagocytosis of filamentous Escherichia coli bacteria by macrophages: successful uptake requires access to one of the terminal bacterial filament poles. By exploiting micropatterned surfaces, we further demonstrate that microenvironmental heterogeneities can slow or inhibit phagocytosis. A comparison to existing literature reveals a common shape-controlled uptake mechanism for both high-aspect ratio filamentous bacteria and engineered particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.