Abstract

The dynamics of fish behavior, migration, and habitat use following stock enhancement will influence the outcome of recovery programs and indicate the ecological limits of the system. This study tested the effect of release density on emigration, activity patterns, and space utilization by releasing juvenile mulloway (Sciaenidae: Argyrosomus japonicus) at low and high densities and monitoring movement intensively for 336 h post release. Mulloway released at high densities had faster emigration and greater overall emigration rates than low density releases. Also, mulloway released at high densities used sub-optimal habitats at a greater frequency. Released fish dispersed into habitat patches at densities proportional to the quality of the habitat patch, consistent with density-dependent habitat selection. Targeting releases of small numbers of fish to the carrying capacity of individual patches of habitat will contribute to the success and economic viability of release programs in open systems. Releases of high densities of individuals or repeated releases at the same site may lead to increased emigration and losses from the stocked system. The capacity of a target habitat to support released fish can be rapidly assessed using pilot releases and intensive monitoring of acoustically tagged fish, prior to the implementation of large-scale release programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.