Abstract
Abstract We say a group 𝐺 has property R ∞ R_{\infty} if the number R ( φ ) R(\varphi) of twisted conjugacy classes is infinite for every automorphism 𝜑 of 𝐺. For such groups, the R ∞ R_{\infty} -nilpotency degree is the least integer 𝑐 such that G / γ c + 1 ( G ) G/\gamma_{c+1}(G) has property R ∞ R_{\infty} . In this work, we compute the R ∞ R_{\infty} -nilpotency degree of all Generalized Solvable Baumslag–Solitar groups Γ n \Gamma_{n} . Moreover, we compute the lower central series of Γ n \Gamma_{n} , write the nilpotent quotients Γ n , c = Γ n / γ c + 1 ( Γ n ) \Gamma_{n,c}=\Gamma_{n}/\gamma_{c+1}(\Gamma_{n}) as semidirect products of finitely generated abelian groups and classify which invertible integer matrices can be extended to automorphisms of Γ n , c \Gamma_{n,c} .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.