Abstract

Seeking the largest solution to an expression of the form A x <= B is a common task in several domains of engineering and computer science. This largest solution is commonly called quotient. Across domains, the meanings of the binary operation and the preorder are quite different, yet the syntax for computing the largest solution is remarkably similar. This paper is about finding a common framework to reason about quotients. We only assume we operate on a preorder endowed with an abstract monotonic multiplication and an involution. We provide a condition, called admissibility, which guarantees the existence of the quotient, and which yields its closed form. We call preordered heaps those structures satisfying the admissibility condition. We show that many existing theories in computer science are preordered heaps, and we are thus able to derive a quotient for them, subsuming existing solutions when available in the literature. We introduce the concept of sieved heaps to deal with structures which are given over multiple domains of definition. We show that sieved heaps also have well-defined quotients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.