Abstract

Lactonases from Bacillus species hydrolyze the N-acylhomoserine lactone (AHL) signaling molecules used in quorum-sensing pathways of many Gram-negative bacteria, including Pseudomonas aeruginosa and Erwinia carotovora, both significant pathogens. Because of sequence similarity, these AHL lactonases have been assigned to the metallo-beta-lactamase superfamily of proteins, which includes metalloenzymes of diverse activity, mechanism, and metal content. However, a recent study claims that AHL lactonase from Bacillus sp. 240B1 is not a metalloprotein [Wang, L. H., et al. (2004) J. Biol. Chem. 279, 13645]. Here, the gene for an AHL lactonase from Bacillus thuringiensis is cloned, and the protein is expressed, purified, and found to bind 2 equiv of zinc. The metal-bound form of AHL lactonase catalyzes the hydrolysis of N-hexanoyl-(S)-homoserine lactone but not the (R) enantiomer. Removal of both zinc ions results in loss of activity, and reconstitution with zinc restores activity, indicating the importance of metal ions for catalytic activity. Metal content, sequence alignments, and X-ray absorption spectroscopy of the zinc-containing lactonase all support a proposed dinuclear zinc binding site similar to that found in glyoxalase II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.