Abstract
We demonstrate that zooplankton escape abilities are consistent with the composition of the zooplankton community in the Great Lakes following the invasion of the visually preying invertebrate predator Bythotrephes longimanus. Escape abilities were analyzed by videotaping responses of free-swimming zooplankton to encounters with tethered Bythotrephes. Both maximum speed and maximum acceleration of the escape response were appreciably greater in Daphnia mendotae and diaptomids, whose populations remained relatively unchanged, than those of Daphnia retrocurva and Daphnia pulicaria, whose populations greatly decreased after the Bythotrephes invasion. Maximum speed of all species was higher in the light than in complete darkness, likely due to a different level of activity of Bythotrephes. Contrary to treatments with Bythotrephes, mean and maximum swimming speeds of all species were similar to each other and the same in light and dark in treatments without Bythotrephes. This implies that the prey were responding to infochemicals produced by Bythotrephes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.