Abstract

Carboxylic acids based on exo‐substituted tria‐, penta‐, heptafulvenes and ethylene (acrylic acids) were examined in order to determine if they are more sensitive to the substituent effect than benzoic acid – the system originally employed by Hammett. In order to accomplish this task, all possible structural isomers of benzoic acid, tria‐, penta‐ and heptafulvene‐based carboxylic acids, acrylic and methacrylic acids substituted by 13 substiuents (BH2, CHO, CN, COCN, NO2, CF3, Me, Cl, F, OH, OMe, NH2 and NMe2) were optimized at the B3LYP/6‐311++G(d,p) level of theory, and Gibbs free energies of carboxylic group dissociation (ΔGdis) were calculated. These energies were subsequently intercorrelated, and from the slopes of linear regressions, it was estimated which system is associated with greatest changes of ΔGdis due to substitution and thus is most sensitive to the substituent effect. It was found that all fulvene‐based carboxylic acids have greater range of ΔGdis change than benzoic acid, but the largest range of change was observed in the case of acrylic and methacrylic acids. The acrylic acid as the most sensitive system to substitution could replace benzoic acid for an improved version of substituent constant used to measure pi‐electron substituent effect. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.