Abstract
Modern information retrieval (IR) systems exhibit user dynamics through interactivity. These dynamic aspects of IR, including changes found in data, users, and systems, are increasingly being utilized in search engines. Session search is one such IR task—document retrieval within a session. During a session, a user constantly modifies queries to find documents that fulfill an information need. Existing IR techniques for assisting the user in this task are limited in their ability to optimize over changes, learn with a minimal computational footprint, and be responsive. This article proposes a novel query change retrieval model (QCM), which uses syntactic editing changes between consecutive queries, as well as the relationship between query changes and previously retrieved documents, to enhance session search. We propose modeling session search as a Markov decision process (MDP). We consider two agents in this MDP: the user agent and the search engine agent. The user agent’s actions are query changes that we observe, and the search engine agent’s actions are term weight adjustments as proposed in this work. We also investigate multiple query aggregation schemes and their effectiveness on session search. Experiments show that our approach is highly effective and outperforms top session search systems in TREC 2011 and TREC 2012.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.